# Complementary NPN-PNP Silicon Power Bipolar Transistors

The NJW3281G and NJW1302G are power transistors for high power audio, disk head positioners and other linear applications.

#### **Features**

- Exceptional Safe Operating Area
- NPN/PNP Gain Matching within 10% from 50 mA to 5 A
- Excellent Gain Linearity
- High BVCEO
- High Frequency
- These Devices are Pb-Free and are RoHS Compliant

#### Benefits

- Reliable Performance at Higher Powers
- Symmetrical Characteristics in Complementary Configurations
- Accurate Reproduction of Input Signal
- Greater Dynamic Range
- High Amplifier Bandwidth

#### **Applications**

- High-End Consumer Audio Products
  - Home Amplifiers
  - Home Receivers
- Professional Audio Amplifiers
  - Theater and Stadium Sound Systems
  - Public Address Systems (PAs)

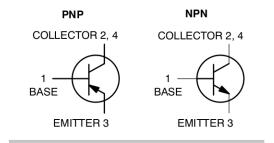
#### **MAXIMUM RATINGS** (T<sub>J</sub> = 25°C unless otherwise noted)

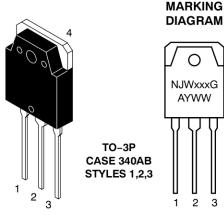
| Rating                                                            | Symbol                            | Value       | Unit |
|-------------------------------------------------------------------|-----------------------------------|-------------|------|
| Collector-Emitter Voltage                                         | V <sub>CEO</sub>                  | 250         | Vdc  |
| Collector-Base Voltage                                            | V <sub>CBO</sub>                  | 250         | Vdc  |
| Emitter-Base Voltage                                              | V <sub>EBO</sub>                  | 5.0         | Vdc  |
| Collector-Emitter Voltage - 1.5 V                                 | V <sub>CEX</sub>                  | 250         | Vdc  |
| Collector Current - Continuous                                    | Ic                                | 15          | Adc  |
| Collector Current - Peak (Note 1)                                 | I <sub>CM</sub>                   | 30          | Adc  |
| Base Current - Continuous                                         | Ι <sub>Β</sub>                    | 1.6         | Adc  |
| Total Power Dissipation @ T <sub>C</sub> = 25°C Derate Above 25°C | P <sub>D</sub>                    | 200<br>1.43 | W/°C |
| Operating and Storage Junction<br>Temperature Range               | T <sub>J</sub> , T <sub>stg</sub> | -65 to +150 | °C   |

#### THERMAL CHARACTERISTICS

| Characteristic                          | Symbol          | Max   | Unit |
|-----------------------------------------|-----------------|-------|------|
| Thermal Resistance, Junction-to-Case    | $R_{\theta JC}$ | 0.625 | °C/W |
| Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 40    | °C/W |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1


1. Pulse Test: Pulse Width = 5 ms, Duty Cycle < 10%.



http://onsemi.com

# 15 AMPERES COMPLEMENTARY SILICON POWER TRANSISTORS 250 VOLTS 200 WATTS





xxxx = 0281 or 0302
G = Pb-Free Package
A = Assembly Location
Y = Year
WW = Work Week

#### ORDERING INFORMATION

| Device   | Package            | Shipping      |
|----------|--------------------|---------------|
| NJW3281G | TO-3P<br>(Pb-Free) | 30 Units/Rail |
| NJW1302G | TO-3P<br>(Pb-Free) | 30 Units/Rail |

# **ELECTRICAL CHARACTERISTICS** ( $T_C = 25^{\circ}C$ unless otherwise noted)

| Characteristic                                                                                                   | Symbol                | Min                        | Тур              | Max                         | Unit |
|------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|------------------|-----------------------------|------|
| OFF CHARACTERISTICS                                                                                              | •                     | •                          |                  |                             | •    |
| Collector–Emitter Sustaining Voltage $(I_C = 100 \text{ mAdc}, I_B = 0)$                                         | V <sub>CEO(sus)</sub> | 250                        | -                | -                           | Vdc  |
| Collector Cutoff Current $(V_{CB} = 250 \text{ Vdc}, I_E = 0)$                                                   | I <sub>CBO</sub>      | _                          | _                | 50                          | μAdc |
| Emitter Cutoff Current<br>(V <sub>EB</sub> = 5 Vdc, I <sub>C</sub> = 0)                                          | I <sub>EBO</sub>      | -                          | -                | 5                           | μAdc |
| SECOND BREAKDOWN                                                                                                 | •                     |                            |                  |                             |      |
| Second Breakdown Collector with Base Forward Biased (V <sub>CE</sub> = 50 Vdc, t = 1 s (non-repetitive)          | I <sub>S/b</sub>      | 4                          | _                | -                           | Adc  |
| ON CHARACTERISTICS                                                                                               | •                     | •                          | •                | •                           |      |
| DC Current Gain                                                                                                  | h <sub>FE</sub>       | 75<br>75<br>75<br>60<br>45 | -<br>-<br>-<br>- | 150<br>150<br>150<br>-<br>- | -    |
| Collector-Emitter Saturation Voltage<br>(I <sub>C</sub> = 8 Adc, I <sub>B</sub> = 0.8 Adc)                       | V <sub>CE(sat)</sub>  | _                          | 0.4              | 0.6                         | Vdc  |
| Base-Emitter On Voltage<br>(I <sub>C</sub> = 8 Adc, V <sub>CE</sub> = 5 Vdc)                                     | V <sub>BE(on)</sub>   | _                          | -                | 1.5                         | Vdc  |
| DYNAMIC CHARACTERISTICS                                                                                          | ·                     |                            |                  |                             |      |
| Current-Gain - Bandwidth Product<br>(I <sub>C</sub> = 1 Adc, V <sub>CE</sub> = 5 Vdc, f <sub>test</sub> = 1 MHz) | f <sub>T</sub>        | _                          | 30               | _                           | MHz  |
| Output Capacitance ( $V_{CB} = 10 \text{ Vdc}, I_E = 0, f_{test} = 1 \text{ MHz}$ )                              | C <sub>ob</sub>       | _                          | _                | 600                         | pF   |

#### TYPICAL CHARACTERISTICS

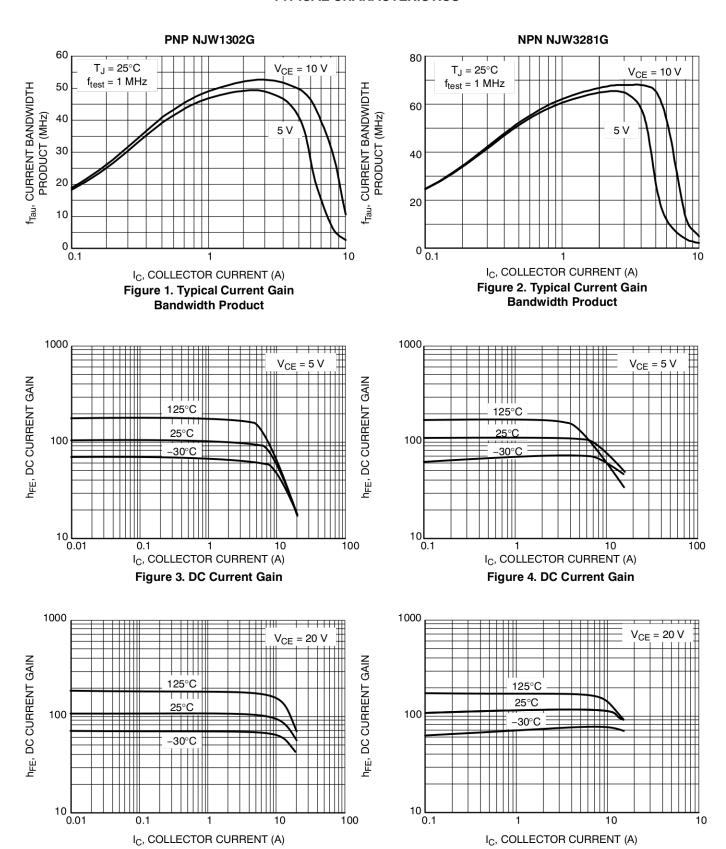
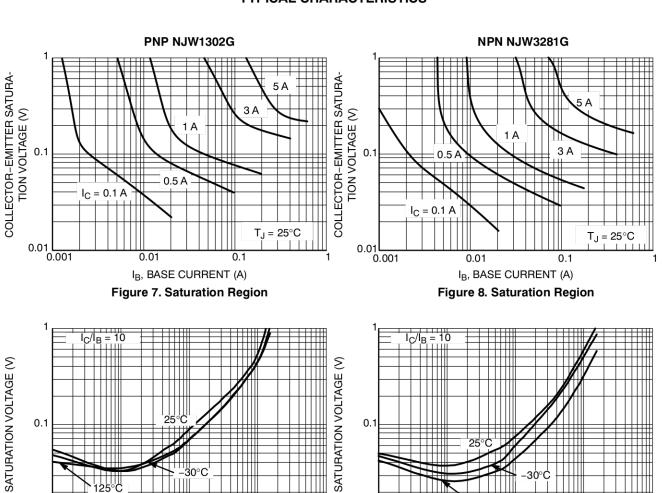




Figure 6. DC Current Gain

Figure 5. DC Current Gain

#### TYPICAL CHARACTERISTICS



0.01

0.01

100

BASE-EMITTER VOLTAGE (V)

IC, COLLECTER CURRENT (A) Figure 9. V<sub>CE(sat)</sub>, Collector–Emitter Saturation Voltage

10

0.01

1.6

1.4

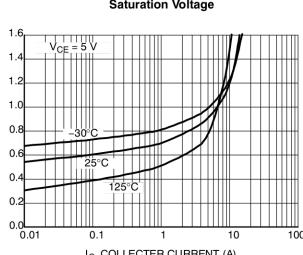
1.2 1.0

8.0

0.6

0.4

0.2


0.0

BASE-EMITTER VOLTAGE (V)

0.01

0.1

CE = 5 V



125°C 0.01 100 IC, COLLECTER CURRENT (A)

Figure 11. V<sub>BE(on)</sub>, Base-Emitter Voltage

I<sub>C</sub>, COLLECTER CURRENT (A) Figure 10. V<sub>CE(sat)</sub>, Collector-Emitter Saturation Voltage

100

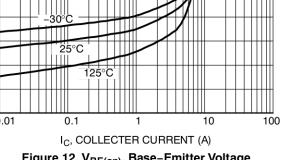
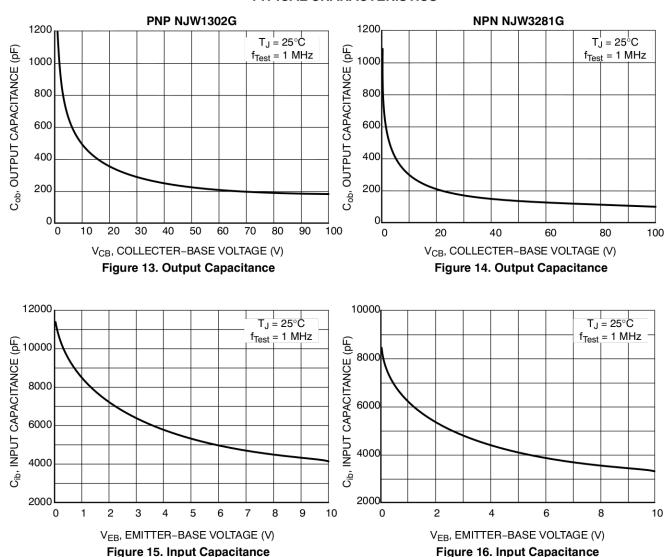




Figure 12. V<sub>BE(on)</sub>, Base-Emitter Voltage

#### **TYPICAL CHARACTERISTICS**



# 

Figure 17. Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor; average junction temperature and secondary breakdown. Safe operating area curves indicate  $I_C$  –  $V_{CE}$  limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

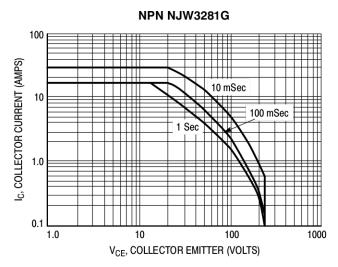
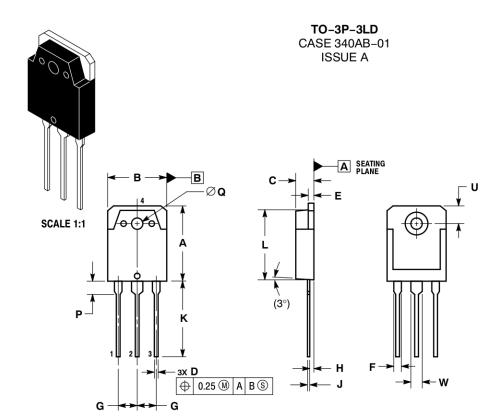



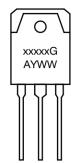

Figure 18. Active Region Safe Operating Area

The data of Figures 17 and 18 is based on  $T_{J(pk)} = 150^{\circ} C$ ;  $T_{C}$  is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown.

**DATE 30 OCT 2007** 



- OTES.


  1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

  2. CONTROLLING DIMENSION: MILLIMETERS

  3. DIMENSION & APPLIES TO PLATED TERMINAL
- AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM THE TERMINAL TIP.
- DIMENSION A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

|     | MILLIMETERS |       |       |  |
|-----|-------------|-------|-------|--|
| DIM | MIN         | NOM   | MAX   |  |
| Α   | 19.70       | 19.90 | 20.10 |  |
| В   | 15.40       | 15.60 | 15.80 |  |
| С   | 4.60        | 4.80  | 5.00  |  |
| D   | 0.80        | 1.00  | 1.20  |  |
| Ε   | 1.45        | 1.50  | 1.65  |  |
| F   | 1.80        | 2.00  | 2.20  |  |
| G   | 5.45 BSC    |       |       |  |
| Н   | 1.20        | 1.40  | 1.60  |  |
| J   | 0.55        | 0.60  | 0.75  |  |
| K   | 19.80       | 20.00 | 20.20 |  |
| L   | 18.50       | 18.70 | 18.90 |  |
| Р   | 3.30        | 3.50  | 3.70  |  |
| Q   | 3.10        | 3.20  | 3.50  |  |
| U   | 5.00 REF    |       |       |  |
| W   | 2.80        | 3.00  | 3.20  |  |

#### **GENERIC MARKING DIAGRAM\***



XXXXX = Specific Device Code = Pb-Free Package G = Assembly Location Α

= Year WW = Work Week

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

### STYLE 1: PIN 1. BASE 2. COLLECTOR

- EMITTER
- COLLECTOR

STYLE 2: ANODE CATHODE PIN 1. ANODE

CATHODE

STYLE 3: PIN 1. GATE 2. DRAIN SOURCE DRAIN

| DOCUMENT NUMBER: | 98AON25095D | Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | TO-3P-3LD   |                                                                                                                                                                                | PAGE 1 OF 1 |

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="https://www.onsemi.org/ste/pdf/Patent-Marking.pdf">www.onsemi.org/ste/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pur

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: <a href="https://www.onsemi.com/design/resources/technical-documentation">www.onsemi.com/design/resources/technical-documentation</a>

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales