BTA06 and BTB06 Series **6A TRIACs** SNUBBERLESS™, LOGIC LEVEL & STANDARD **Table 1: Main Features** | Symbol | Value | Unit | |------------------------------------|-------------|------| | I _{T(RMS)} | 6 | Α | | V _{DRM} /V _{RRM} | 600 and 800 | V | | I _{GT (Q₁)} | 5 to 50 | mA | #### **DESCRIPTION** Available either in through-hole or surface-mount packages, the **BTA06** and **BTB06** triac series is suitable for general purpose AC switching. They can be used as an ON/OFF function in applications such as static relays, heating regulation, induction motor starting circuits... or for phase control operation in light dimmers, motor speed controllers,... The snubberless and logic level versions (BTA/BTB...W) are specially recommended for use on inductive loads, thanks to their high commutation performances. By using an internal ceramic pad, the BTA series provides voltage insulated tab (rated at 2500V_{RMS}) complying with UL standards (File ref.: E81734). **Table 2: Order Codes** | Part Number | Marking | |---------------|---------------------| | BTA06-xxxxxRG | See page table 8 on | | BTB06-xxxxxRG | page 6 | **Table 3: Absolute Maximum Ratings** | Symbol | Paramet | Parameter | | | | | | |------------------------------------|--|--------------------------------|------------------------|----|------------------|--|--| | L | RMS on-state current (full sine | TO-220AB $T_c = 110^{\circ}C$ | | 6 | Α | | | | T(RMS) | wave) | TO-220AB Ins. | $T_c = 105$ °C | 0 | ^ | | | | I _{TSM} | Non repetitive surge peak on-state | F = 50 Hz | t = 20 ms | 60 | Α | | | | I ISM | current (full cycle, T_j initial = 25°C) | F = 60 Hz | t = 16.7 ms | 63 | | | | | l²t | I ² t Value for fusing | t _p = 10 ms | | 21 | A ² s | | | | dl/dt | Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, $t_r \le 100 \text{ ns}$ | F = 120 Hz | T _j = 125°C | 50 | A/µs | | | | I _{GM} | Peak gate current | t _p = 20 μs | $T_j = 125^{\circ}C$ | 4 | Α | | | | P _{G(AV)} | Average gate power dissipation $T_j = 125^{\circ}C$ | | | 1 | W | | | | T _{stg}
T _j | Storage junction temperature range Operating junction temperature range | - 40 to + 150
- 40 to + 125 | °C | | | | | **Tables 4: Electrical Characteristics** ($T_j = 25$ °C, unless otherwise specified) # ■ SNUBBERLESS and Logic Level (3 quadrants) | Symbol | vmbol Test Conditions | | | | BTA06 | BTB06 | | Unit | |---------------------|--|--------------|--------|-----|-------|-------|------|-------| | Syllibol | rest conditions | Quadrant | | TW | SW | CW | BW | Oilit | | I _{GT} (1) | $V_D = 12 \text{ V} R_L = 30 \Omega$ | 1 - 11 - 111 | MAX. | 5 | 10 | 35 | 50 | mA | | V _{GT} | VD = 12 V 11[= 30 32 | 1 - 11 - 111 | MAX. | | 1 | .3 | | V | | V _{GD} | $V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$
$T_j = 125^{\circ}\text{C}$ | 1 - 11 - 111 | MIN. | | 0 | .2 | | V | | I _H (2) | I _T = 100 mA | | MAX. | 10 | 15 | 35 | 50 | mA | | I _I | I _G = 1.2 I _{GT} | 1 - 111 | MAX. | 10 | 25 | 50 | 70 | mA | | 'L | 16 - 1.2 161 | II | IVIAA. | 15 | 30 | 60 | 80 | IIIA | | dV/dt (2) | $V_D = 67 \% V_{DRM}$ gate open $T_j = 125 \degree C$ | | MIN. | 20 | 40 | 400 | 1000 | V/µs | | | $(dV/dt)c = 0.1 V/\mu s$ $T_j = 125$ °C | | | 2.7 | 3.5 | - | - | | | (dl/dt)c (2) | $(dV/dt)c = 10 V/\mu s$ $T_j = 125$ °C | | MIN. | 1.2 | 2.4 | - | - | A/ms | | | Without snubber $T_j = 125^{\circ}C$ | ; | | - | - | 3.5 | 5.3 | | ## ■ Standard (4 quadrants) | Symbol | Symbol Test Conditions | | | BTA06 / BTB06 | | Unit | |---------------------|---|--------------------|---------|---------------|-----------|------| | Symbol | rest conditions | Quadrant | | С | В | | | I _{GT} (1) | $V_D = 12 \text{ V}$ $R_L = 30 \Omega$ | I - II - III
IV | MAX. | 25
50 | 50
100 | mA | | V _{GT} | | ALL | MAX. | 1. | .3 | V | | V_{GD} | $V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$ $T_j = 125^{\circ}\text{C}$ | ALL | MIN. | 0.2 | | V | | I _H (2) | I _T = 500 mA | | MAX. | 25 | 50 | mA | | I | I _G = 1.2 I _{GT} | I - III - IV | MAX. | 40 | 50 | mA | | ,r_ | - G | II | IVIZZZ. | 80 | 100 | | | dV/dt (2) | $V_D = 67 \text{ %}V_{DRM}$ gate open $T_j = 125 \text{ °C}$ | | MIN. | 200 | 400 | V/µs | | (dV/dt)c (2) | $(dI/dt)c = 2.7 \text{ A/ms}$ $T_j = 125^\circ$ | C | MIN. | 5 | 10 | V/µs | **Table 5: Static Characteristics** | Symbol | Test C | Test Conditions | | | | | |---------------------|---|------------------------|--------|------|----|--| | V _{TM} (2) | $I_{TM} = 8.5 \text{ A}$ $t_p = 380 \mu\text{s}$ | T _j = 25°C | MAX. | 1.55 | V | | | V _{t0} (2) | Threshold voltage | T _j = 125°C | MAX. | 0.85 | V | | | R _d (2) | Dynamic resistance | T _j = 125°C | MAX. | 60 | mΩ | | | I _{DRM} | $V_{DRM} = V_{RRM}$ | T _j = 25°C | MAX. 5 | | μΑ | | | I _{RRM} | VDRM - VRRM | T _j = 125°C | MAX. 1 | | mA | | Note 1: minimum I_{GT} is guaranted at 5% of I_{GT} max. Note 2: for both polarities of A2 referenced to A1. 577 **Table 6: Thermal resistance** | Symbol | Paramete | Value | Unit | | |----------------------|--|--------------------------------|------|------| | B., | lunction to coop (AC) | TO-220AB | 1.8 | °C/W | | ' 'th(j-c) | R _{th(j-c)} Junction to case (AC) | TO-220AB Insulated | 2.7 | C/VV | | R _{th(j-a)} | Junction to ambient | TO-220AB
TO-220AB Insulated | 60 | °C/W | Figure 1: Maximum power dissipation versus RMS on-state current (full cycle) P(W) 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 Figure 3: Relative variation of thermal impedance versus pulse duration Figure 2: RMS on-state current versus case temperature (full cycle) Figure 4: On-state characteristics (maximum values) Figure 5: Surge peak on-state current versus number of cycles Figure 7: Relative variation of gate trigger current, holding current and latching current versus junction temperature (typical values) Figure 9: Relative variation of critical rate of decrease of main current versus (dV/dt)c (typical values) (Standard types) Figure 6: Non-repetitive surge peak on-state current for a sinusoidal pulse with width $t_p < 10$ ms and corresponding value of I^2t Figure 8: Relative variation of critical rate of decrease of main current versus (dV/dt)c (typical values) (Snubberless & logic level types) Figure 10: Relative variation of critical rate of decrease of main current versus junction temperature 57 Figure 11: Ordering Information Scheme **Table 7: Product Selector** | Part Number | Voltage (xxx) | | Sensitivity | Type | | |-----------------|---------------|-------|-------------|-------------|----------| | Part Number | 600 V | 800 V | Sensitivity | Туре | Package | | BTA/BTB06-xxxB | Х | Х | 50 mA | Standard | TO-220AB | | BTA/BTB06-xxxBW | Х | Х | 50 mA | Snubberless | TO-220AB | | BTA/BTB06-xxxC | Х | Х | 25 mA | Standard | TO-220AB | | BTA/BTB06-xxxCW | Х | Х | 35 mA | Snubberless | TO-220AB | | BTA/BTB06-xxxSW | Х | Х | 10 mA | Logic level | TO-220AB | | BTA/BTB06-xxxTW | Х | Х | 5 mA | Logic Level | TO-220AB | BTB: non insulated TO-220AB package Figure 12: TO-220AB (insulated and non insulated) Package Mechanical Data | | DIMENSIONS | | | | | | |------|------------|---------|-------|-------|-------|-------| | REF. | Mi | llimete | rs | | | | | | Min. | Тур. | Max. | Min. | Тур. | Max. | | Α | 15.20 | | 15.90 | 0.598 | | 0.625 | | a1 | | 3.75 | | | 0.147 | | | a2 | 13.00 | | 14.00 | 0.511 | | 0.551 | | В | 10.00 | | 10.40 | 0.393 | | 0.409 | | b1 | 0.61 | | 0.88 | 0.024 | | 0.034 | | b2 | 1.23 | | 1.32 | 0.048 | | 0.051 | | С | 4.40 | | 4.60 | 0.173 | | 0.181 | | c1 | 0.49 | | 0.70 | 0.019 | | 0.027 | | c2 | 2.40 | | 2.72 | 0.094 | | 0.107 | | е | 2.40 | | 2.70 | 0.094 | | 0.106 | | F | 6.20 | | 6.60 | 0.244 | | 0.259 | | ØI | 3.75 | | 3.85 | 0.147 | | 0.151 | | 14 | 15.80 | 16.40 | 16.80 | 0.622 | 0.646 | 0.661 | | L | 2.65 | | 2.95 | 0.104 | | 0.116 | | 12 | 1.14 | | 1.70 | 0.044 | | 0.066 | | 13 | 1.14 | | 1.70 | 0.044 | | 0.066 | | М | | 2.60 | | | 0.102 | | In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. **Table 8: Ordering Information** | Ordering type | Marking | Package | Weight | Base qty | Delivery mode | |-------------------|-----------------|----------|--------|----------|---------------| | BTA/BTB06-xxxyzRG | BTA/BTB06-xxxyz | TO-220AB | 2.3 g | 50 | Tube | **Note:** xxx = voltage, yy = sensitivity, z = type **Table 9: Revision History** | Date | Revision | Description of Changes | |-------------|----------|--| | Apr-2002 | 5A | Last update. | | 13-Feb-2006 | 6 | TO-220AB delivery mode changed from bulk to tube. ECOPACK statement added. | 6/7 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2006 STMicroelectronics - All rights reserved ## STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com